본문으로

Matematiko

글쓴이: MiMalamasLaAnglan, 2020년 1월 14일

글: 17

언어: Esperanto

MiMalamasLaAnglan (프로필 보기) 2020년 1월 14일 오후 6:37:18

Kiel oni priparolas matematikon Esperante? Kiujn vortojn oni uzas por aferoj kiel + - * kaj / ?

Kiel oni legas la kvadratan formulon, ekzemple?

Se ax² + bx + c = 0, tiam:

-b ± √(b² - 4ac)
----------------------
2a

nornen (프로필 보기) 2020년 1월 14일 오후 7:27:15

Mi ne scias, sed se mi elparolu ĝin spontanee, mi dirus ion tiel:

Se a xo kvadrata plus bo xo kvadrata plus c egalas nul, do xo egalas minus bo plus minus (la) radiko de bo kvadrata minus kvar a co, ĉio dividite per du a.

Kiel oni diru: ∃x [∅∈x ∧ ∀y (y∈x → ⋃{y,{y}}∈x) ]

sergejm (프로필 보기) 2020년 1월 14일 오후 7:32:45

Ekzistas x, tia ke malplena aro estas ano de x kaj por ajna y se y estas ano de x tiam ...

nornen (프로필 보기) 2020년 1월 14일 오후 8:07:29

sergejm:Ekzistas x, tia ke malplena aro estas ano de x kaj por ajna y se y estas ano de x tiam ...
...la kunigo de la aroj enhavantaj yon kaj la aron enhavantan yon, estas ano de xo?

Metsis (프로필 보기) 2020년 1월 15일 오전 10:19:30

MML,

Eble ĉi tiun malnovan fadenon interesigas vin, sed ignoru skribaĵojn de Amigueo.

Jxusteno (프로필 보기) 2020년 1월 15일 오후 3:38:35

Estas interese, ĉu oni povas diri
du on du faras unu (2÷2=1) kaj du obl du faras kvar (2×2=4)?

nornen (프로필 보기) 2020년 1월 15일 오후 7:04:37

Jxusteno:Estas interese, ĉu oni povas diri
du on du faras unu (2÷2=1) kaj du obl du faras kvar (2×2=4)?
La problemo kun "on" estas, ke ĝi ŝanĝas la legdirekton:

a / b = c
bo'one a egalas co
Laŭ mi pli konvene: a dividite (per) bo egalas co.

Metsis (프로필 보기) 2020년 1월 15일 오후 7:18:08

Jxusteno:Estas interese, ĉu oni povas diri
du on du faras unu (2÷2=1) kaj du obl du faras kvar (2×2=4)?
Miakomprene ne. Laŭ PIV -on estas sufikso, ne memstara vorto, kiu povus signifi operatoro. Estas kelkaj vortoj, en kiuj on funkcias kiel radiko – ono, oneco kaj onigi – sed neniu kun signifo de divido. La situacio por -obl estas la sama.

En tiu malnova fadeno estas kelkaj alternativoj por divido kaj multipliko. Notu, ke diversaj esprimoj havas diversajn fakojn de uzo: en vendejo, en klasĉambro de baza lernejo, en universitato…

nornen (프로필 보기) 2020년 1월 15일 오후 7:18:37

Eble antaŭ ol priparoli la vortigon de aritmetikaj eldiroj, oni priparolu unue la vortigon de araj eldiroj, ĉar la aritmetiko (ekz Peano'a aritmetiko) baziĝas sur araj sistemoj (ekz ZF kaj ZFC).

Antaŭ ol priparoli la vortigon de araj eldiroj, oni priparolu la vortigon de logikaj eldiroj, ĉar la araj sistemoj (ekz ZF kaj ZFC) baziĝas sur unuaranga logiko.

Do, ni bezonas vortigojn por: ⊤, ⊥, ¬; ∧, ∨, →, ↔; ∀, ∃; (por nomi la plej kutimajn)

⊤: vero
⊥: malvero
¬: ne
A ∧ B: a kaj bo
A ∨ B: a aŭ bo
A → B: (jam) se a, sekve bo (mi uzas "sekve" anstataŭ "do", ĉar "do" estas ankaŭ la nomo de la litero D)
A ↔ B: a, se kaj nur se bo
∀a: por ĉiu a; por ĉia a, por ajna a
∃a: ekzistas a, ekzistas tia a

Ekz: Estu P eldiro pri a.
∀a(P) ↔ ¬∃a(¬P): por ĉiu A validas Po, se kaj nur se ne ekzistas tia A, ke ne validas Po.
∃a(P) ↔ ¬∀a(¬P): ekzistas tia A, ke validas Po, se kaj nur se ne por ĉiu A ne validas Po.

Taŭge?

MiMalamasLaAnglan (프로필 보기) 2020년 1월 16일 오후 7:44:07

Metsis:
Jxusteno:Estas interese, ĉu oni povas diri
du on du faras unu (2÷2=1) kaj du obl du faras kvar (2×2=4)?
Miakomprene ne. Laŭ PIV -on estas sufikso, ne memstara vorto, kiu povus signifi operatoro. Estas kelkaj vortoj, en kiuj on funkcias kiel radiko – ono, oneco kaj onigi – sed neniu kun signifo de divido. La situacio por -obl estas la sama.

En tiu malnova fadeno estas kelkaj alternativoj por divido kaj multipliko. Notu, ke diversaj esprimoj havas diversajn fakojn de uzo: en vendejo, en klasĉambro de baza lernejo, en universitato…
Ĉiuj sufiksoj povas esti memstaraj vortoj, ekzemple "ujo", "ege", "aĉa", ktp.

다시 위로