Malfacila elekto por Zam
viết bởi StephaSport, Ngày 01 tháng 3 năm 2008
Tin nhắn: 16
Nội dung: Esperanto
Filu (Xem thông tin cá nhân) 14:50:24 Ngày 02 tháng 3 năm 2008
horsto:Laŭ mia kompreno post la malfermo de unu taso nova ludo startas. La antaŭa selekto ne plu gravas, restas 2 tasoj kaj Zam povas selekti unu el ili. Tial ne gravas kiun tason li selektas, la probableco estas 0.5. Sed tio nur validas, se la amiko sciis la ĝustan tason, estas tute alia afero se ankaŭ li ne scias la ĝustan tason.Estis parto de la ludo, ke unu taso estu malkovrita post la unua elekto. Ekzemple, pripensu pri kvizoj televidaj: se la ludestro ne sciis kie oni kaŝis la prezon, tiun ĉi la malkovro iam vidigus al la ĉeestantaro kaj ludanto. Ĉar ne estas la kazo (ĉiam la prezo plu kaŝiĝas), ni suspektu, ke la ludestro jam konis la lokon de la prezo.
horsto (Xem thông tin cá nhân) 19:46:49 Ngày 03 tháng 3 năm 2008
Filu (Xem thông tin cá nhân) 20:17:18 Ngày 03 tháng 3 năm 2008
Ho nu! StephaSport jam antaŭe menciis ion tre simila al tio, kion mi ĵus skribis, sed ĉar jam estas skribita mia mesaĝo, ĝi enlernu!iĝu!
mnlg (Xem thông tin cá nhân) 11:41:19 Ngày 04 tháng 3 năm 2008
Ekzistas multaj eminentuloj kiuj "ne komprenas" ĝin. Estas amuze ke multaj miaj amikoj havis malfacilon, dum iu alia, kiu kutime ne ŝatas matematikon, tuj komprenis ĝin Tamen, mi ŝatas ekzempligi ĝin per ĉi tio:
Tri homoj estas en karcero: sinjoroj A, B kaj C. Morgaŭ ili devus ĉiuj morti; sed pro tio ke estas naskiĝtago de la Reĝo, unu estos savita, sed A, B kaj C ankoraŭ ne scias tiun, kiu estos.
Sinjoro A estas nervozega, kaj volegas scii ĉu li vivos aŭ mortos. Li provas konvinki la karceran gardiston diri ion, sed li rifuzas.
Sed A ne kapablas trankviliĝi. Do li diras al la gardisto: "mi scias, ke vi ne rajtas diri al mi, kiu estos savita. Sed vi almenaŭ povas diri al mi kiu, inter B kaj C, mortos. Vi ne malobeos al viaj reguloj, kaj mi estos iom pli trankvila. Jen, mi donacos al vi mian horloĝon".
La gardisto pripensetas kaj poste diras "B mortos".
A nun estas pli trankvila, kaj pensas "antaŭe, mi nur havis 1/3an eblecon por saviĝi, sed nun, mi havas 1/2an!".
Ĉu li pravas?
Kompreneble ne!
Teorie, ankaŭ B kaj C povintus preĝpeti siajn gardistojn, kaj ricevi similan informon. Sed ne povas esti, ke kaj A, kaj B kaj C havas 1/2an procenton saviĝi; 1/2+1/2+1/2 = 3/2, kaj tio ne eblas!
Tio kio okazas estas ke C nun havas 2/3an eblecon saviĝi, dum A ankoraŭ 1/3an. Kaj oni jam skribis kial, do mi ne ripetu; mi tamen opinias ke ĉi tiu ekzemplo povas iom helpi.
Miland (Xem thông tin cá nhân) 15:14:38 Ngày 04 tháng 3 năm 2008
Miland (Xem thông tin cá nhân) 15:25:03 Ngày 04 tháng 3 năm 2008
Alia vido. Supozu eventoj estas
X por (X savitas), x por (X pafitas) kaj "x" por (Gardistoj diras ke X pafitas). Ni havas
Pr(aBc kaj "c") = Pr(aBc) = 1/3
Pr(abC kaj "b") = Pr(abC) = 1/3
Pr (Abc kaj "b") = 1/6
Pr(Abc kaj "c") = 1/6
[Por la lasta du, notu ke
Pr(Abc) = 1/3 = Pr(Abc kaj "b")+Pr(Abc kaj "c") kaj Pr(Abc kaj "b")=Pr(Abc kaj "c")]
Do Pr (Abc kaj "b") = duono de Pr(abC kaj "b") t.e.
Pr(A savitas, aŭdante "b") estas duono de
Pr(A pafitas, aŭdante "b").
Tial Pr(A savitas, aŭdante "b") = 1/3