Skip to the content

Matematika tasko

by sergejm, February 10, 2021

Messages: 92

Language: Esperanto

Altebrilas (User's profile) May 15, 2021, 10:17:57 AM

nornen:Inĝenioroj: √3 = 2
Statistikistoj: √3 = 1.73
Matematikistoj: √3 = √3
Komercistoj: √3 = 1 (plus 73% da profto)
Dektrimodulistoj: √3 = 4

Altebrilas (User's profile) May 15, 2021, 10:26:15 AM

sergejm:Pli simple:
(O + N + E) + (T + W + E + L + V + E) = (T + W + O) + (E + L + E + V + E + N) = 13
Kial vi kaimanas? La enigmo estas rekte tradukebla esperanten:
(U + N + U) + (D+E+K+D+U) = (D+U) + (D+E+K+U+N+U) = 13

sergejm (User's profile) May 15, 2021, 11:29:32 AM

Altebrilas:Kial vi kaimanas? La enigmo estas rekte tradukebla esperanten:
(U + N + U) + (D+E+K+D+U) = (D+U) + (D+E+K+U+N+U) = 13
Esperante estas tro evidente. Angle tia ekvacio estas nur hazarda.

Altebrilas (User's profile) May 15, 2021, 2:59:29 PM

Tio ne estas tuta koincido. Vidu etimologion:
https://www.etymonline.com/word/eleven

sergejm (User's profile) May 15, 2021, 7:56:55 PM

Temas ne pri etimologio, sed pri nuna skribo de nombroj en la angla.
Se por Esperanto vi donas kostojn de literojn tiel ke UNU kostas 1, DU kostas 2, ..., DEK kostas 10, tiam aŭtomate DEK UNU kostas 11, DEK DU kostas 12, ..., DEK NAŬ kostas 19, sed DUDEK kostos 12, ne 20.
Entute estas 14 literojn kaj nur 10 ekvacion, do estas multaj eblaj valoroj por literoj (iuj povas havi negativan koston).
Kaj ni ne povas nomi koston de nek unu litero.
Do tasko pri kosto de DEK DU en Esperanto ne estas tro interesa.

Ne estas tiel el la angla: nur hazarde estas ke TWELVE kaj ONE konsitas el samaj literoj kiel ELEVEN kaj TWO. Ne estas tiel por THIRTEEN k.t.p.

En la angla ONE, TWO, THREE, ..., TEN ankaŭ konsistas el 14 literoj, ELEVEN kaj TWENLVE aldonas L kaj TWENTY aldonas Y, do eblas fari ke TWENTY = 20.
Ni volas ke TEN = TEEN = 10, do E = 0
Ni volas ke THREE = THIR = 3, do ankaŭ I = 0
Ni volas ke FIVE =FIF = 5, do F = V = 2,5
Vi povas daŭrigi - preskaŭ ĉiuj literoj povas havi nur unu certan valoron, kaj tion donas ekvacioj por dua deko.

Altebrilas (User's profile) May 16, 2021, 9:57:57 PM

Jes la etimologio klarigas nur "LV" kiu estas komuna al la du nombroj. La aliaj literoj estas koincido.

Mi ne solvis la ekvaciojn - oni prefere uzas programon por tio. Sed estus interese kalkuli, por iu ajn lingvo , ĝis kiu nombro la sistemo de ekvacioj havas solvojn.

Alia simila problemo estas la nombro de literoj:

unu havas 3 literojn, tri same havas 3 literojn.
du havas 2 literojn.
kvar havas 4 literojn, same kiel kvin.
ses kaj sep havas tri literojn...
ok havas du
naŭ havas tri, same kiel dek

Do en esperanto, 2,3 kaj 4 havas tiom da literojn kiom ili signifas. En la angla, nur 4 havas tiun propraĵon.

En aliaj lingvoj, tio povas rondiri, kiel en la franca:
1=UN ->2=DEUx -> 4= QUATRE ->6 = SIX -> 3 = TROIS -> 5 = CINQ -> 4 = QUATRE... ktp

Do [4,6,3,5] havas tiom da literoj kiom signifas la sekvontan (cirkle).

Tiuj nombroj - aŭ rondoj - dependas de la lingvo.

nornen (User's profile) May 17, 2021, 5:15:02 PM

sergejm:"En ĉi tiu frazo nombro de okazoj de cifero 0 estas _, de cifero 1 estas _, de 2 estas _, de 3 estas _, de 4 estas _, de 5 estas _, de 6 estas _, de 7 estas _, de 8 estas _, de 9 estas _".
Anstataŭu "_" per nombroj 1, 2, 3 k.t.p. Ĉu estas kelkaj respondoj?
“En ĉi tiu frazo nombro de okazoj de cifero 0 estas n₀, de cifero 1 estas n₁, de 2 estas n₂, de 3 estas n₃, de 4 estas n₄, de 5 estas n₅, de 6 estas n₆, de 7 estas n₇, de 8 estas n₈, de 9 estas n₉.”

La nombro de ciferoj en la frazo estas Σnₖ ≥ 20. La nombro de dekumaj ciferoj de nombro x egalas ⌊log x⌋ + 1, estante log la dekuma logaritmo. Sekve veras, ke 10 + Σ ( ⌊log nₖ⌋ + 1) = 20 + Σ ⌊log nₖ⌋ = Σnₖ ≥ 20.

Mi pruvos per kontraŭdiro, ke Σnₖ ≠ 22.

Se Σnₖ = 22, do Σ ⌊log nₖ⌋ = 2. Tio signifas, ke (a) unu nₖ havas tri ciferojn kaj la pliaj nₖ havas po unu ciferon; aŭ (b) du nₖ havas po du ciferojn kaj la pliaj nₖ hava po unu ciferon.

Okaze de (a), Σnₖ ≥ 109 > 22. Kontraŭdiro!
Okaze de (b), Σnₖ ≥ 28 > 22. Kontraŭdiro!

Sekve, ne estas solvo por Σnₖ = 22.

Mi pruvos per indukto, ke ne ekzistas solvo por Σnₖ ≥ 22.
La bazkazon Σnₖ = 22 mi ĵus pruvis.
Estas pruvinde, ke 20 + Σ ⌊log nₖ⌋ > Σnₖ implikas, ke ne estas solvo por Σnₖ + 1.
Se Σnₖ* = 1 + Σnₖ, do Σ ⌊log nₖ*⌋ ≥ 1 + Σ ⌊log nₖ⌋. Sekve 20 + Σ ⌊log nₖ*⌋ ≥ 21 + Σ ⌊log nₖ⌋ > 1 + Σnₖ = Σnₖ*. Kio estis pruvinda.

Tio signifas, ke por ĉiu solvo veras, ke Σnₖ = 20 aŭ Σnₖ = 21.

Per elĉerpa ŝercado, oni trovas unu solvon (1, 7, 3, 2, 1, 1, 1, 2, 1, 1) por Σnₖ = 20 kaj unu solvon (1, 11, 2, 1, 1, 1, 1, 1, 1, 1) por Σnₖ = 21. Ĉar ne ekzistas solvoj por Σnₖ ≥ 22, tiuj du estas la solaj solvoj.

Altebrilas (User's profile) May 17, 2021, 9:59:10 PM

nornen:“En ĉi tiu frazo nombro de okazoj de cifero 0 estas n₀, de cifero 1 estas n₁, de 2 estas n₂, de 3 estas n₃, de 4 estas n₄, de 5 estas n₅, de 6 estas n₆, de 7 estas n₇, de 8 estas n₈, de 9 estas n₉.”
Mi ne komprenis. Se temas pri memrefereco, ĉiuj ciferoj videble aperas dufoje. ???

nornen (User's profile) May 17, 2021, 10:50:38 PM

Altebrilas:
nornen:“En ĉi tiu frazo nombro de okazoj de cifero 0 estas n₀, de cifero 1 estas n₁, de 2 estas n₂, de 3 estas n₃, de 4 estas n₄, de 5 estas n₅, de 6 estas n₆, de 7 estas n₇, de 8 estas n₈, de 9 estas n₉.”
Mi ne komprenis. Se temas pri memrefereco, ĉiuj ciferoj videble aperas dufoje. ???
Tiu estas respondo al la problemo, kiun afiŝis sergejm:

sergejm:"En ĉi tiu frazo nombro de okazoj de cifero 0 estas _, de cifero 1 estas _, de 2 estas _, de 3 estas _, de 4 estas _, de 5 estas _, de 6 estas _, de 7 estas _, de 8 estas _, de 9 estas _".
Anstataŭu "_" per nombroj 1, 2, 3 k.t.p. Ĉu estas kelkaj respondoj?
Mi nur nomis la "_"...

Altebrilas (User's profile) May 18, 2021, 9:25:40 AM

Per rekurenca metodo mi trovis la solvon (1,11,2,1,1,1...)

Back to the top