ورود به محتوا

Daŭrigu denove!

از fizikisto, 26 ژوئیهٔ 2009

پست‌ها: 26

زبان: Esperanto

Miland (نمایش مشخصات) 27 ژوئیهٔ 2009،‏ 20:43:28

La unua sekvo estas tre interesa enigmo. Mi ankoraŭ ne eltrovis ĝian sekreton, tamen mi rimarkis kelkajn interesajn ŝablonojn.

Mi hipotezas ke la alternaj ciferoj indikas nur lokojn, do en
3112 3 estas la unua, 1 estas la dua, dum en
114213, 1 estas la 1a, 4 la 2a, 1 la 3a.

Se oni ignoras tiujn lokciferojn, eliĝas la vico

1, 1,
2, 11,
31, 211,
321, 222, 141,
4121, 3212, 2321, 2321
(kaj stabilas, onidire).

Mi organizis la numerojn ĉi tiel, ĉar en la unua linio, la sumo de la ciferoj estas 1, en la 2a, 2; en la 3a, 4; en la 4a, 6; kaj en la 5a, 8.

En ĉiu linio la plej granda unua cifero komencanta numeron aperas unue, kaj poste malgrandiĝas.

Tamen ni ne havas ekzemple 2222 en la lasta linio, nek 5111. Ne mencii ke estas nulo nenie. Strange!

fizikisto (نمایش مشخصات) 27 ژوئیهٔ 2009،‏ 20:59:48

Miland:Mi rimarkis ke 3234433233+3333333333=
6567766566 kaj 6567766566+3333333333=
9901099899. Ĉu la lastaj du ciferoj, do, ne estas 6 (=3+3) kaj 9 (=3+3+3)?
La vico ne konsistas el ciferoj sed el numeroj, kiuj povas esti pli grandaj ol 9.
La lastaj du ciferoj estas 5=2+3 kaj 8=2+3+3.
Atentu mian komenton al Dominique.

fizikisto (نمایش مشخصات) 27 ژوئیهٔ 2009،‏ 21:08:49

Miland:La unua sekvo estas tre interesa enigmo. Mi ankoraŭ ne eltrovis ĝian sekreton, tamen mi rimarkis kelkajn interesajn ŝablonojn.

Mi hipotezas ke la alternaj ciferoj indikas nur lokojn, do en
3112 3 estas la unua, 1 estas la dua, dum en
114213, 1 estas la 1a, 4 la 2a, 1 la 3a.

Se oni ignoras tiujn lokciferojn, eliĝas la vico

1, 1,
2, 11,
31, 211,
321, 222, 141,
4121, 3212, 2321, 2321
(kaj stabilas, onidire).

Mi organizis la numerojn ĉi tiel, ĉar en la unua linio, la sumo de la ciferoj estas 1, en la 2a, 2; en la 3a, 4; en la 4a, 6; kaj en la 5a, 8.

En ĉiu linio la plej granda unua cifero komencanta numeron aperas unue, kaj poste malgrandiĝas.

Tamen ni ne havas ekzemple 2222 en la lasta linio, nek 5111. Ne mencii ke estas nulo nenie. Strange!
Oni povas komenci je alia startnombro, ekzemple:

5, 15, 1115, 3115, 211315, 31121315, ...

Eble tio helpos vin.

Miland (نمایش مشخصات) 27 ژوئیهٔ 2009،‏ 21:44:20

fizikisto:La vico ne konsistas el ciferoj sed el numeroj, kiuj povas esti pli grandaj ol 9.
La lastaj du ciferoj estas 5=2+3 kaj 8=2+3+3.
Atentu mian komenton al Dominique.
Sed ĉiuj numeroj de 10 estas pli grandaj ol 9! Tio ne klarigas la vicon 3,2,3, ktp. Mi supozas ke vi volis diri ion alian.

fizikisto (نمایش مشخصات) 28 ژوئیهٔ 2009،‏ 6:46:44

Miland:Tamen ni ne havas ekzemple 2222 en la lasta linio, nek 5111. Ne mencii ke estas nulo nenie. Strange!
Oni povas krei novan vicon laŭ la sama regulo, sed kun malsama startnombro:

2222, 42, 1214, 211214, ...

aŭ la sekvan vicon:

22, 22, 22, 22, ...

fizikisto (نمایش مشخصات) 28 ژوئیهٔ 2009،‏ 6:49:21

Miland:Sed ĉiuj numeroj de 10 estas pli grandaj ol 9! Tio ne klarigas la vicon 3,2,3, ktp. Mi supozas ke vi volis diri ion alian.
Ne pensu tro matematike!

Miland (نمایش مشخصات) 28 ژوئیهٔ 2009،‏ 10:02:13

fizikisto:
Miland:Sed ĉiuj numeroj de 10 estas pli grandaj ol 9! Tio ne klarigas la vicon 3,2,3, ktp. Mi supozas ke vi volis diri ion alian.
Ne pensu tro matematike!
Ha, mi komprenas. Post 5 kaj 8 ni havas 7,8,9,9... Tamen '2' ne estas pli granda ol '9', matematike aŭ alie, ĉu ne?

Miland (نمایش مشخصات) 28 ژوئیهٔ 2009،‏ 10:51:08

fizikisto:
2222, 42, 1214, 211214, ...
aŭ la sekvan vicon:
22, 22, 22, 22, ...
Dankon, mi notis ilin. Mi daŭros la klopodon. Estas tre interesa problemo, ĉar ŝajne ĝi proponas serĉadon por la subaj 'leĝoj de la naturo', simile kiel sciencistoj faras. La serĉo por la 'leĝoj' enhavas imagadon, divenadon, kaj testadon!

Miland (نمایش مشخصات) 18 نوامبر 2009،‏ 14:48:08

Miaopinie mi trovis la solvon!
Jen alia ekzemplo farita de mi per la sama metodo:
7, 17, 1117, 3117, 211317, 31121317...
Ĉu prave?

fizikisto (نمایش مشخصات) 18 نوامبر 2009،‏ 21:26:11

Ĝuste! Post multe da tempo, jen finfine la solvo. Gratulojn!

بازگشت به بالا