본문으로

Daŭrigu denove!

글쓴이: fizikisto, 2009년 7월 26일

글: 26

언어: Esperanto

Miland (프로필 보기) 2009년 7월 27일 오후 8:43:28

La unua sekvo estas tre interesa enigmo. Mi ankoraŭ ne eltrovis ĝian sekreton, tamen mi rimarkis kelkajn interesajn ŝablonojn.

Mi hipotezas ke la alternaj ciferoj indikas nur lokojn, do en
3112 3 estas la unua, 1 estas la dua, dum en
114213, 1 estas la 1a, 4 la 2a, 1 la 3a.

Se oni ignoras tiujn lokciferojn, eliĝas la vico

1, 1,
2, 11,
31, 211,
321, 222, 141,
4121, 3212, 2321, 2321
(kaj stabilas, onidire).

Mi organizis la numerojn ĉi tiel, ĉar en la unua linio, la sumo de la ciferoj estas 1, en la 2a, 2; en la 3a, 4; en la 4a, 6; kaj en la 5a, 8.

En ĉiu linio la plej granda unua cifero komencanta numeron aperas unue, kaj poste malgrandiĝas.

Tamen ni ne havas ekzemple 2222 en la lasta linio, nek 5111. Ne mencii ke estas nulo nenie. Strange!

fizikisto (프로필 보기) 2009년 7월 27일 오후 8:59:48

Miland:Mi rimarkis ke 3234433233+3333333333=
6567766566 kaj 6567766566+3333333333=
9901099899. Ĉu la lastaj du ciferoj, do, ne estas 6 (=3+3) kaj 9 (=3+3+3)?
La vico ne konsistas el ciferoj sed el numeroj, kiuj povas esti pli grandaj ol 9.
La lastaj du ciferoj estas 5=2+3 kaj 8=2+3+3.
Atentu mian komenton al Dominique.

fizikisto (프로필 보기) 2009년 7월 27일 오후 9:08:49

Miland:La unua sekvo estas tre interesa enigmo. Mi ankoraŭ ne eltrovis ĝian sekreton, tamen mi rimarkis kelkajn interesajn ŝablonojn.

Mi hipotezas ke la alternaj ciferoj indikas nur lokojn, do en
3112 3 estas la unua, 1 estas la dua, dum en
114213, 1 estas la 1a, 4 la 2a, 1 la 3a.

Se oni ignoras tiujn lokciferojn, eliĝas la vico

1, 1,
2, 11,
31, 211,
321, 222, 141,
4121, 3212, 2321, 2321
(kaj stabilas, onidire).

Mi organizis la numerojn ĉi tiel, ĉar en la unua linio, la sumo de la ciferoj estas 1, en la 2a, 2; en la 3a, 4; en la 4a, 6; kaj en la 5a, 8.

En ĉiu linio la plej granda unua cifero komencanta numeron aperas unue, kaj poste malgrandiĝas.

Tamen ni ne havas ekzemple 2222 en la lasta linio, nek 5111. Ne mencii ke estas nulo nenie. Strange!
Oni povas komenci je alia startnombro, ekzemple:

5, 15, 1115, 3115, 211315, 31121315, ...

Eble tio helpos vin.

Miland (프로필 보기) 2009년 7월 27일 오후 9:44:20

fizikisto:La vico ne konsistas el ciferoj sed el numeroj, kiuj povas esti pli grandaj ol 9.
La lastaj du ciferoj estas 5=2+3 kaj 8=2+3+3.
Atentu mian komenton al Dominique.
Sed ĉiuj numeroj de 10 estas pli grandaj ol 9! Tio ne klarigas la vicon 3,2,3, ktp. Mi supozas ke vi volis diri ion alian.

fizikisto (프로필 보기) 2009년 7월 28일 오전 6:46:44

Miland:Tamen ni ne havas ekzemple 2222 en la lasta linio, nek 5111. Ne mencii ke estas nulo nenie. Strange!
Oni povas krei novan vicon laŭ la sama regulo, sed kun malsama startnombro:

2222, 42, 1214, 211214, ...

aŭ la sekvan vicon:

22, 22, 22, 22, ...

fizikisto (프로필 보기) 2009년 7월 28일 오전 6:49:21

Miland:Sed ĉiuj numeroj de 10 estas pli grandaj ol 9! Tio ne klarigas la vicon 3,2,3, ktp. Mi supozas ke vi volis diri ion alian.
Ne pensu tro matematike!

Miland (프로필 보기) 2009년 7월 28일 오전 10:02:13

fizikisto:
Miland:Sed ĉiuj numeroj de 10 estas pli grandaj ol 9! Tio ne klarigas la vicon 3,2,3, ktp. Mi supozas ke vi volis diri ion alian.
Ne pensu tro matematike!
Ha, mi komprenas. Post 5 kaj 8 ni havas 7,8,9,9... Tamen '2' ne estas pli granda ol '9', matematike aŭ alie, ĉu ne?

Miland (프로필 보기) 2009년 7월 28일 오전 10:51:08

fizikisto:
2222, 42, 1214, 211214, ...
aŭ la sekvan vicon:
22, 22, 22, 22, ...
Dankon, mi notis ilin. Mi daŭros la klopodon. Estas tre interesa problemo, ĉar ŝajne ĝi proponas serĉadon por la subaj 'leĝoj de la naturo', simile kiel sciencistoj faras. La serĉo por la 'leĝoj' enhavas imagadon, divenadon, kaj testadon!

Miland (프로필 보기) 2009년 11월 18일 오후 2:48:08

Miaopinie mi trovis la solvon!
Jen alia ekzemplo farita de mi per la sama metodo:
7, 17, 1117, 3117, 211317, 31121317...
Ĉu prave?

fizikisto (프로필 보기) 2009년 11월 18일 오후 9:26:11

Ĝuste! Post multe da tempo, jen finfine la solvo. Gratulojn!

다시 위로