Missatges: 4
Llengua: Esperanto
lanmei (Mostra el perfil) 28 d’agost de 2024 12.53.59
Frano (Mostra el perfil) 28 d’agost de 2024 17.22.03
awake (Mostra el perfil) 22 de setembre de 2024 18.44.15
Oni povas uzi la ĉenan regulon de kalkulo por pruvi ĝin.
a = dv/dt = (dv/dx)(dx/dt) (per la ĉena regulo)
ĉar v = dx/dt oni povas anstaŭigi ĝin --> a = (dv/dx)*v
post iom da algebro: (v) dv = (a) dx . Nun vi povas integrali ambaŭ flankojn de la ekvacio
int (v) dv (de vo ĝis vf) = int (a) dx (de xo ĝis xf)
Se "a" estas konstanto
1/2 (vf^2 -vo^2) = a (xf - xo)
vf^2 -vo^2 = 2 a ∆x (kie ∆x = xf - xo)
vf^2 = vo^2 + 2 a ∆x
Frano (Mostra el perfil) 23 de setembre de 2024 8.06.16
Multipliku ambaŭ flankojn de la ekvacio per m/2.
Tiam:
Kf = Ko + ma∆x
Kf - Ko = F∆x
∆K = A
Ŝanĝo en kineta energio estas la laboro de forto - konata teoremo pri kineta energio. Do la origina ekvacio eble estas vera.