Skip to the content

Demando pri grandaj kaj malgrandaj homoj

by fizikisto, July 1, 2010

Messages: 9

Language: Esperanto

fizikisto (User's profile) July 1, 2010, 1:12:58 PM

Imagu multajn homojn, kiuj staras laŭ kvadrato.

Nun elektu el ĉiu horizontalo la plej grandan homon, kaj poste elektu la plej malgrandan el tiuj kaj nomu lin A.
Faru male ĉe la vertikaloj: Elektu el ĉiu vertikalo la plej malgrandan homon, kaj poste elektu la plej grandan el tiuj kaj nomu lin B.

Nun la demando: Ĉu A kaj B ĉiam estas same grandaj aŭ ĉu A ĉiam estas pli granda ol B aŭ ĉu estas alia situacio?

Sxak (User's profile) July 1, 2010, 2:19:11 PM

nepre A>=B

jan aleksan (User's profile) July 1, 2010, 2:22:44 PM

Vi ne diris sufiĉe. se, nombro da kvadratoj=nombro da homoj, A=B. ĉu?

Sxak (User's profile) July 1, 2010, 2:27:09 PM

jan aleksan:Vi ne diris sufiĉe. se, nombro da kvadratoj=nombro da homoj, A=B. ĉu?
Mi diris, ke >- , do "pli aŭ egalas"
Por A=b:
1 2
3 4
por A>b
1 2
2 1
Kaj eblas pruvi, ke B ne povas esti pli ol A

Miland (User's profile) July 1, 2010, 3:40:01 PM

Ĉu temas pri amaso ("multaj") da homoj disigita laŭ la randoj de kvadrato? Ne eblas diri ĉu A aŭ B estas pli granda.

Supozu ke la flankoj estas etikeditaj N,S (horizontoj, kiel en karto) kaj E,W.
Ekz 1. Maks(N) = 10, Maks(S) = 11, Min(W) = 9, Min(E) = 10, do A = Min(Maks(N),Maks(S)) = 10 = Maks(Min(E),Min(W))= B
Ekz 2.Maks(N) = 12, Maks(S) = 11, Min(W) = 9, Min(E) = 10, do A > B
Ekz 3. Maks(N) = 8, Maks(S) = 11, Min(W) = 9, Min(E) = 10, do A < B

Sxak (User's profile) July 2, 2010, 5:50:08 AM

Miland:
Ekz 3. Maks(N) = 8, Maks(S) = 11, Min(W) = 9, Min(E) = 10, do A < B
Ĉu vi povas montri tian pozicion?
Ĉar se Maks(N) = 8, do ĉiuj nordaj punktoj estas 8 aŭ malpli kaj inter ili la angulo NE, do la minimumo E devas esti 8 aŭ malpli kaj ne 10, kion vi skribas

Miland (User's profile) July 2, 2010, 1:00:16 PM

Ŝak:
Miland:
Ekz 3. Maks(N) = 8, Maks(S) = 11, Min(W) = 9, Min(E) = 10, do A < B
Ĉu vi povas montri tian pozicion?
Ĉar se Maks(N) = 8, do ĉiuj nordaj punktoj estas 8 aŭ malpli kaj inter ili la angulo NE, do la minimumo E devas esti 8 aŭ malpli kaj ne 10, kion vi skribas
Mi supozas ke homoj ne povas esti samtempe en horizontalo "N" kaj vertikalo "E", t.e. estas neniu al la anguloj.

fizikisto, ĉu povas esti homoj ĉe la anguloj?

fizikisto (User's profile) July 5, 2010, 12:01:01 PM

Pardonu min, kelkajn tagojn mi ne estis ĉi tie. La homoj staras ne nur laŭ la rando de la kvadrato, sed ili staras laŭ N vicoj, kaj ĉiu vico enhavas N homojn:

Ekz. 16 homoj en kvadrato kun N=4:

x x x x
x x x x
x x x x
x x x x

Sxak (User's profile) July 5, 2010, 12:52:32 PM

Do A>=B kaj povas esti kaj A>B kaj A=B sed ne A < B

Back to the top