Więcej

Demando pri grandaj kaj malgrandaj homoj

od fizikisto, 1 lipca 2010

Wpisy: 9

Język: Esperanto

fizikisto (Pokaż profil) 1 lipca 2010, 13:12:58

Imagu multajn homojn, kiuj staras laŭ kvadrato.

Nun elektu el ĉiu horizontalo la plej grandan homon, kaj poste elektu la plej malgrandan el tiuj kaj nomu lin A.
Faru male ĉe la vertikaloj: Elektu el ĉiu vertikalo la plej malgrandan homon, kaj poste elektu la plej grandan el tiuj kaj nomu lin B.

Nun la demando: Ĉu A kaj B ĉiam estas same grandaj aŭ ĉu A ĉiam estas pli granda ol B aŭ ĉu estas alia situacio?

Sxak (Pokaż profil) 1 lipca 2010, 14:19:11

nepre A>=B

jan aleksan (Pokaż profil) 1 lipca 2010, 14:22:44

Vi ne diris sufiĉe. se, nombro da kvadratoj=nombro da homoj, A=B. ĉu?

Sxak (Pokaż profil) 1 lipca 2010, 14:27:09

jan aleksan:Vi ne diris sufiĉe. se, nombro da kvadratoj=nombro da homoj, A=B. ĉu?
Mi diris, ke >- , do "pli aŭ egalas"
Por A=b:
1 2
3 4
por A>b
1 2
2 1
Kaj eblas pruvi, ke B ne povas esti pli ol A

Miland (Pokaż profil) 1 lipca 2010, 15:40:01

Ĉu temas pri amaso ("multaj") da homoj disigita laŭ la randoj de kvadrato? Ne eblas diri ĉu A aŭ B estas pli granda.

Supozu ke la flankoj estas etikeditaj N,S (horizontoj, kiel en karto) kaj E,W.
Ekz 1. Maks(N) = 10, Maks(S) = 11, Min(W) = 9, Min(E) = 10, do A = Min(Maks(N),Maks(S)) = 10 = Maks(Min(E),Min(W))= B
Ekz 2.Maks(N) = 12, Maks(S) = 11, Min(W) = 9, Min(E) = 10, do A > B
Ekz 3. Maks(N) = 8, Maks(S) = 11, Min(W) = 9, Min(E) = 10, do A < B

Sxak (Pokaż profil) 2 lipca 2010, 05:50:08

Miland:
Ekz 3. Maks(N) = 8, Maks(S) = 11, Min(W) = 9, Min(E) = 10, do A < B
Ĉu vi povas montri tian pozicion?
Ĉar se Maks(N) = 8, do ĉiuj nordaj punktoj estas 8 aŭ malpli kaj inter ili la angulo NE, do la minimumo E devas esti 8 aŭ malpli kaj ne 10, kion vi skribas

Miland (Pokaż profil) 2 lipca 2010, 13:00:16

Ŝak:
Miland:
Ekz 3. Maks(N) = 8, Maks(S) = 11, Min(W) = 9, Min(E) = 10, do A < B
Ĉu vi povas montri tian pozicion?
Ĉar se Maks(N) = 8, do ĉiuj nordaj punktoj estas 8 aŭ malpli kaj inter ili la angulo NE, do la minimumo E devas esti 8 aŭ malpli kaj ne 10, kion vi skribas
Mi supozas ke homoj ne povas esti samtempe en horizontalo "N" kaj vertikalo "E", t.e. estas neniu al la anguloj.

fizikisto, ĉu povas esti homoj ĉe la anguloj?

fizikisto (Pokaż profil) 5 lipca 2010, 12:01:01

Pardonu min, kelkajn tagojn mi ne estis ĉi tie. La homoj staras ne nur laŭ la rando de la kvadrato, sed ili staras laŭ N vicoj, kaj ĉiu vico enhavas N homojn:

Ekz. 16 homoj en kvadrato kun N=4:

x x x x
x x x x
x x x x
x x x x

Sxak (Pokaż profil) 5 lipca 2010, 12:52:32

Do A>=B kaj povas esti kaj A>B kaj A=B sed ne A < B

Wróć do góry