メッセージ: 13
言語: Esperanto
fizikisto (プロフィールを表示) 2010年12月23日 20:10:23
Kiom da familianoj averaĝe elektis sian destinitan donacon? Kaj ĉu vi povas pruvi la rezulton?
Sxak (プロフィールを表示) 2010年12月27日 11:17:32
estas iom malpli facila tasko "kia estas probableco, ke almenaŭ iu ricevos sian donacon"
Miland (プロフィールを表示) 2010年12月27日 18:52:14
Lom (プロフィールを表示) 2011年1月5日 16:12:57
Bonvolu poŝti pli da enigmoj.
Sxak (プロフィールを表示) 2011年1月6日 0:40:36
Lom:Kia estas probableco, ke neniu ricevos sian donacon?
Bonvolu poŝti pli da enigmoj.
Lom (プロフィールを表示) 2011年1月6日 19:54:12
Kia estas probableco, ke neniu ricevos sian donacon?e^(-1)=0.3678794412 laŭ la ligilo de Miland.
Sed mi nur legis tion rapide.
Sxak (プロフィールを表示) 2011年1月7日 2:31:47
ha. ĉu tie estas solvita ankaŭ tiu eneigmo?
do jen la sekva:
3 ludantoj ludas jenan ludon:
Komence ili havas x, y kaj z stelojn. Ĉe ĉiu paŝo Ili per ĵetkubo elektas du ludantojn, poste denove per ĵetkubo elektas gajninton kaj malgajninto pagas al gajninto 1 stelon.
Se iu ludanto perdas ĉiujn stelojn, tiu lasas la ludon, sed la ludo plu daŭras inter la lastaj 2 ludantoj, ĝis iu icevos ĉiujn x+y+z stelojn.
1. Kiom da paŝoj averaĝe daŭros tiu ludo?
2. Kia estas probableco gajni por ĉiu ludanto?
fizikisto (プロフィールを表示) 2011年4月24日 12:12:43
Ŝak:3 ludantoj ludas jenan ludon:Hodiaŭ mi tralegis ĉi tie kelkajn malnovajn enigmojn kaj trovis ĉi tiun, kiu ekde Kristnasko atendas sian solvon. Nun estas Pasko kaj jen la solvo (estis pli facile ol mi unue pensis, tamen mi bezonis kvin foliojn da papero):
Komence ili havas x, y kaj z stelojn. Ĉe ĉiu paŝo Ili per ĵetkubo elektas du ludantojn, poste denove per ĵetkubo elektas gajninton kaj malgajninto pagas al gajninto 1 stelon.
Se iu ludanto perdas ĉiujn stelojn, tiu lasas la ludon, sed la ludo plu daŭras inter la lastaj 2 ludantoj, ĝis iu icevos ĉiujn x+y+z stelojn.
1. Kiom da paŝoj averaĝe daŭros tiu ludo?
2. Kia estas probableco gajni por ĉiu ludanto?
Unue mi solvis ĝin por 2 ludantoj. Mi trovis ke averaĝe la ludo daŭras x*y paŝojn. La probableco gajni por la ludantoj estas x/(x+y) kaj y/(x+y).
Nun estas facile diveni la solvon por 3 ludantoj. La gajnprobablecoj estas x/(x+y+z) ktp., kion oni facile povas pruvi. Rimarkinde, ĝi estas honesta ludo, tio signifas ke ĉiu ludanto averaĝe gajnas 0.
Por 3 ludantoj la ludo daŭras x*y*z paŝoj ĝis unu el la ludantoj malgajnas. Ĉar la restantaj ludantoj ludas plu, la plena solvo estas, se mi ne mispensis, (x+1)*(y+1)*(z+1)-x-y-z+1 = x*y*z + x*y + x*z + y*z.
Sxak (プロフィールを表示) 2011年4月24日 13:48:19
fizikisto:Jes ĝuste. Mi ne forigis tion, ĉar mi volas montri vian kontraŭdiron:
Unue mi solvis ĝin por 2 ludantoj. Mi trovis ke averaĝe la ludo daŭras x*y paŝojn. La probableco gajni por la ludantoj estas x/(x+y) kaj y/(x+y).
fizikisto:estu x=y=z=1 Laŭ via formulo la ludo daŭras 4, sed post 1 ajna paŝo la situacio estos 2 1 0, kio laŭ via supra kaj ĝusta formulo daŭos 2 pliajn paŝojn, do por 1 1 1 la ludo evidente daŭros 3 paŝojn, sed via formulo montras 4
la plena solvo estas, se mi ne mispensis, (x+1)*(y+1)*(z+1)-x-y-z+1 = x*y*z + x*y + x*z + y*z.
fizikisto (プロフィールを表示) 2011年4月24日 20:36:38
Ŝak:estu x=y=z=1 Laŭ via formulo la ludo daŭras 4, sed post 1 ajna paŝo la situacio estos 2 1 0, kio laŭ via supra kaj ĝusta formulo daŭos 2 pliajn paŝojn, do por 1 1 1 la ludo evidente daŭros 3 paŝojn, sed via formulo montras 4Hm, jes, vi pravas. Ŝajne mi kalkulis tro rapide. Kaj mi devas konfesi, ke nun mi ne plu povas memori kiel mi atingis tiun malĝustan formulon. La kunmetado de la unuaj paŝoj ĝis unu ludanto malgajnas kaj la sekvantaj paŝoj inter la restintaj ludantoj nun ŝajnas al mi malfacila.
Eble morgaŭ mi rezonos iomete plu.