Til innholdet

Matematika tasko

fra sergejm,2021 2 10

Meldinger: 125

Språk: Esperanto

nornen (Å vise profilen) 2021 2 12 22:17:12

Se x estas la plej malgranda positiva reala radiko de x⁵ − 37x⁴ + 138x³ − 250x² + 85x − 1, do la krita radiuso ρ = 1/arctan(√x).

nornen (Å vise profilen) 2021 2 13 05:00:36

Denove: ĉapelon antaŭ via matematikkapabloj!!!

Ĉu vi estas doktoro/profesoro de matematiko?

sergejm (Å vise profilen) 2021 2 13 06:47:50

Ne, nun mi estas nur progamisto. Sed kiam mi estis lernanto, mi partoprenis en matematikaj olimpiadoj sur niveloj lerneja, urba, provinca, rusia kaj tutunia (tiam ankoraŭ estis Soveta Unio). Poste mi estis studento de mekanika-matematika fakultato de MŜU.

Altebrilas (Å vise profilen) 2021 2 13 11:45:02

La solvo estas: s= b*h/2 =10*6/2 =30

La ekzisto de tia triangulo estas alia problemo. Sed se ĝi ekzistas, tio estas la solvo.

Oni povas kalkuli la intersektaj punktoj, kie la horizontalo y=6 intersektas la cirklo x^2+y^2=5 =>x^2+36=25 => x ^2=11

La solvo estas x=(+ /- ) i*sqrt(11), t.e. sur la imaginara akso de x

sergejm (Å vise profilen) 2021 2 13 12:20:50

Imaĝinara akso - ankaŭ estas ne-Eŭklida geometrio. En ordinaraj lernejoj oni ne studas ĝin.

sergejm (Å vise profilen) 2021 2 17 22:21:37

Estas alia tasko en Google.
Solvu la ekvacion:
(x² - 7x + 11) ^ (x² - 13x + 42) = 1
kie x ^ y signifas levo de x al potenco y - pow(x,y) en C++
Kiel diras la aŭtoro de la video:
Laŭ rusa matematiko, la solvo estas { 2, 5, 6, 7 }
Laŭ usona matematiko, la solvo estas { 2, 3, 4, 5, 6, 7 }

Sed fakte, iuj rusaj matematikistoj konsentas kun usona respondo.

Frano (Å vise profilen) 2021 2 18 08:19:30

Kio estas la produkto de ĉiuj pozitivaj (x > 0) reelaj nombroj?

sergejm (Å vise profilen) 2021 2 18 10:29:34

Frano:Kio estas la produkto de ĉiuj pozitivaj (x > 0) reelaj nombroj?
Kvanto de reelaj nombroj ne estas kalkulebla (счетно), sed kontinua (континуум).
Tiajn produktojn matematiko ne rigardas, nur limo de prodikto de senfina vico de nombroj, kies kvanto estas kalkulebla. Kaj eĉ tiam rezulto ofte dependas de ordo.

Frano (Å vise profilen) 2021 2 18 11:50:44

Jes, ordo gravas. En nia okazo, ni povas akiri tri solvojn. La unua limo de la produto de senfina vico estas nulo, la dua estas senfineco. La tria solvo estas eĉ ne limo, al kiu ni senfine alproksimiĝas, sed tute "normala" nombro - unuo.

Kvanto de reelaj nombroj ne estas kalkulebla. Sed estas konata "esperanta rimedo" - divigu, rekunmetu kaj regu.
Ni divigu intervalon ]0,∞[ je tri partoj: ]0 , A[, A kaj ]A , ∞[ kie A estas arbitra reela nombro.
Ni difinu unu-al-unu rilaton inter du aroj. Por ĉiu nomro B el ]0,A[ ni prenu tielan nombron C el ]A,∞[ ke C*B=A^2.
Tiam ∏ = A * ∏(A^2)
Ĉar A estis elektita arbitre, do ni havas tri ebloj:
Se A>1, tiam lim∏ = ∞.
Se A=1, tiam ∏ = 1.
Se A<1, tiam lim∏ = 0.

sergejm (Å vise profilen) 2021 2 18 14:37:17

Per reordigo, oni povas fari ajnan deziratan reelan nombron, kvankam ĉi tio ne estas simpla.
Por ne havi aferon kun nekalkulebla aro de nombrojn, kalkulu produkton de raciaj pozitivaj nombroj
R = П p[ i ]/q[ i ]
kie p[ i ] > 0, q[ i ] > 0 el Z kaj por ajna r > 0 el Q ekzistas unu kaj nur unu i, tia ke r = p[ i ]/q[ i ].

Tibake til toppen