去目錄頁

Matematika tasko

sergejm, 2021年2月10日

讯息: 125

语言: Esperanto

nornen (显示个人资料) 2021年2月12日下午10:17:12

Se x estas la plej malgranda positiva reala radiko de x⁵ − 37x⁴ + 138x³ − 250x² + 85x − 1, do la krita radiuso ρ = 1/arctan(√x).

nornen (显示个人资料) 2021年2月13日上午5:00:36

Denove: ĉapelon antaŭ via matematikkapabloj!!!

Ĉu vi estas doktoro/profesoro de matematiko?

sergejm (显示个人资料) 2021年2月13日上午6:47:50

Ne, nun mi estas nur progamisto. Sed kiam mi estis lernanto, mi partoprenis en matematikaj olimpiadoj sur niveloj lerneja, urba, provinca, rusia kaj tutunia (tiam ankoraŭ estis Soveta Unio). Poste mi estis studento de mekanika-matematika fakultato de MŜU.

Altebrilas (显示个人资料) 2021年2月13日上午11:45:02

La solvo estas: s= b*h/2 =10*6/2 =30

La ekzisto de tia triangulo estas alia problemo. Sed se ĝi ekzistas, tio estas la solvo.

Oni povas kalkuli la intersektaj punktoj, kie la horizontalo y=6 intersektas la cirklo x^2+y^2=5 =>x^2+36=25 => x ^2=11

La solvo estas x=(+ /- ) i*sqrt(11), t.e. sur la imaginara akso de x

sergejm (显示个人资料) 2021年2月13日下午12:20:50

Imaĝinara akso - ankaŭ estas ne-Eŭklida geometrio. En ordinaraj lernejoj oni ne studas ĝin.

sergejm (显示个人资料) 2021年2月17日下午10:21:37

Estas alia tasko en Google.
Solvu la ekvacion:
(x² - 7x + 11) ^ (x² - 13x + 42) = 1
kie x ^ y signifas levo de x al potenco y - pow(x,y) en C++
Kiel diras la aŭtoro de la video:
Laŭ rusa matematiko, la solvo estas { 2, 5, 6, 7 }
Laŭ usona matematiko, la solvo estas { 2, 3, 4, 5, 6, 7 }

Sed fakte, iuj rusaj matematikistoj konsentas kun usona respondo.

Frano (显示个人资料) 2021年2月18日上午8:19:30

Kio estas la produkto de ĉiuj pozitivaj (x > 0) reelaj nombroj?

sergejm (显示个人资料) 2021年2月18日上午10:29:34

Frano:Kio estas la produkto de ĉiuj pozitivaj (x > 0) reelaj nombroj?
Kvanto de reelaj nombroj ne estas kalkulebla (счетно), sed kontinua (континуум).
Tiajn produktojn matematiko ne rigardas, nur limo de prodikto de senfina vico de nombroj, kies kvanto estas kalkulebla. Kaj eĉ tiam rezulto ofte dependas de ordo.

Frano (显示个人资料) 2021年2月18日上午11:50:44

Jes, ordo gravas. En nia okazo, ni povas akiri tri solvojn. La unua limo de la produto de senfina vico estas nulo, la dua estas senfineco. La tria solvo estas eĉ ne limo, al kiu ni senfine alproksimiĝas, sed tute "normala" nombro - unuo.

Kvanto de reelaj nombroj ne estas kalkulebla. Sed estas konata "esperanta rimedo" - divigu, rekunmetu kaj regu.
Ni divigu intervalon ]0,∞[ je tri partoj: ]0 , A[, A kaj ]A , ∞[ kie A estas arbitra reela nombro.
Ni difinu unu-al-unu rilaton inter du aroj. Por ĉiu nomro B el ]0,A[ ni prenu tielan nombron C el ]A,∞[ ke C*B=A^2.
Tiam ∏ = A * ∏(A^2)
Ĉar A estis elektita arbitre, do ni havas tri ebloj:
Se A>1, tiam lim∏ = ∞.
Se A=1, tiam ∏ = 1.
Se A<1, tiam lim∏ = 0.

sergejm (显示个人资料) 2021年2月18日下午2:37:17

Per reordigo, oni povas fari ajnan deziratan reelan nombron, kvankam ĉi tio ne estas simpla.
Por ne havi aferon kun nekalkulebla aro de nombrojn, kalkulu produkton de raciaj pozitivaj nombroj
R = П p[ i ]/q[ i ]
kie p[ i ] > 0, q[ i ] > 0 el Z kaj por ajna r > 0 el Q ekzistas unu kaj nur unu i, tia ke r = p[ i ]/q[ i ].

回到上端