본문으로

Matematika tasko

글쓴이: sergejm, 2021년 2월 10일

글: 125

언어: Esperanto

sergejm (프로필 보기) 2021년 2월 18일 오후 3:05:41

Ne, eĉ kun nur raciaj numbroj ni ne povas fari konverĝan (сходящююся) vicon - por ajna R kaj i, ni povas trovi j > i, tia ke r[ j ] = p[ j ]/q[ j ] > R

Se ne estas kompreneble, jen la ekzemplo:
1 * 2 * 1/2 * 3 * 1/3 * 3/2 * 4 * 1/4 * 4/3 * 3/4 * ...
Partaj produktoj estas:
1, 2, 1, 3, 1, 3/2, 1, 4, 1, 4/3, 1, ...
Kvankam neparaj partaj produktoj ĉiuj estas 1, el paraj ni renkontas pli kaj pli grandajn nombrojn.

nornen (프로필 보기) 2021년 2월 18일 오후 5:19:38

sergejm:Estas alia tasko en Google.
Solvu la ekvacion:
(x² - 7x + 11) ^ (x² - 13x + 42) = 1
kie x ^ y signifas levo de x al potenco y - pow(x,y) en C++
Kiel diras la aŭtoro de la video:
Laŭ rusa matematiko, la solvo estas { 2, 5, 6, 7 }
Laŭ usona matematiko, la solvo estas { 2, 3, 4, 5, 6, 7 }

Sed fakte, iuj rusaj matematikistoj konsentas kun usona respondo.
Supozante, ke nia aritmetiko difinas la potencigon de enteraj bazoj kun naturaj eksponentoj tiel:

∀z∊ℤ (z⁰ = 1)
∀z∊ℤ ∀n∊ℕ⁺ (zⁿ = z · zⁿ⁻¹)

Tio sufiĉas por la tasko.

x² - 13x + 42 = 0 → x ∊ {6, 7}
x² - 7x + 11 = 1 → x ∊ {2, 5}
x² - 7x + 11 = −1 → x ∊ {3, 4}

En la okazo de x ∊ {3, 4} ni devas certigi, ke la eksponento estu para.

x = 3 → x² - 13x + 42 = 12.
x = 4 → x² - 13x + 42 = 6.

Do, ankaŭ mi dirus, ke x ∊ {2, 3, 4, 5, 6, 7}, se ni uzas la supran difinon.

- - - -

Kia estas la argumento, ke (−1)⁶ ne estus 1?

sergejm (프로필 보기) 2021년 2월 18일 오후 6:36:16

Estas kvar+ variantoj:
1. x estas entiero (Diafana ekvacio). Tiam solvo estas {2, 3, 4, 5, 6, 7}
2. x estas reelo, ne entiero kiel en C++
x, y estas reeloj pow(x,y) = { exp(ln(x)*y) se x > 0; 0 se x = 0, y > 0; nedefinita se x < 0 }
La solvo estas {2., 5., 6., 7.}
3. Entieroj estas subaro de reeloj, kiel estas en ordinara matematiko. Tiam al la supra defino de pow(x,y) ni devas aldoni vian pli supran definon por negativa x.
Sed mi opinias, ke 0⁰ estas nedefinita.
La solvo estas {2, 3, 4, 5, 6, 7}
4. x estas kompleksa. pow(x,y) estas multfolia funkcio. Eble aperas pliaj solvoj.
5. x estas ano de alia aro. ...

Sed por lernejo plej taŭgas varianto 3.

nornen (프로필 보기) 2021년 2월 18일 오후 8:55:13

sergejm:4. x estas kompleksa. pow(x,y) estas multfolia funkcio. Eble aperas pliaj solvoj.
Almenaŭ unu ĉirkau x ≈ 2.007925760324401618717922223 − 0.1053030714714703214904926767 i.

nornen (프로필 보기) 2021년 2월 18일 오후 9:08:46

sergejm:Sed mi opinias, ke 0⁰ estas nedefinita.
Neniam estos interkonsento pri 3 demandoj:
Ĉu 0⁰ estas difinita?
Ĉu 0 ∊ ℕ?
Kiu uzis la lastan klozetpaperon kaj ne ponis novan?

Mi opinias, ke oni ĉiam elektu laŭ la tasko solvinda.

nornen (프로필 보기) 2021년 2월 18일 오후 9:22:49

sergejm:en C++ x, y estas reeloj pow(x,y) = { exp(ln(x)*y) se x > 0; 0 se x = 0, y > 0; nedefinita se x < 0 }
En python, math.pow(-1, 2.2) levas math domain error, sed (-1)**2.2 redonas (0.809016994374947+0.5877852522924736j).
Kompleksaj nombroj estas nativa datentipo.

sergejm (프로필 보기) 2021년 2월 18일 오후 11:04:18

x**2.2 estas x**(11/5) kaj do estas kvinfolia funkcio kaj (-1)**2.2 havas kvin rezultojn.
Por komparo, (-1)**0.5 = sqrt(-1) estas dufolia funkcio kaj havas du rezultojn i kaj -i.
Python donas al vi nur unu el ili.
Por eviti tiajn problemojn, la aŭtoro de menciita video konsideras ke x**y estas nedefinita por x < 0.
https://youtu.be/0ZZRmgXXlHs

nornen (프로필 보기) 2021년 2월 19일 오전 3:48:48

Kvankam python'a funkcio povas redoni pli ol unu valoron (eĉ nefinian nombron da ili), mi opinias, ke la kreintoj de python elektis redoni "nur" la ĉefan radikon de x**2.2, ĉar:

a) ĝenerale oni volas reuzi la redonaĵon por pliaj kalkuloj, sen bezono unue ekzameni, ĉu la rezulto estas unu, finie multa aŭ nefinie multa.
b) la pliaj radikoj estas kalkuleblaj el la angulo.

Fakte, neniam estis, kaj neniam estos, programlingvo, kiu havas/is/os datentipon por reelaj nombroj.

sergejm (프로필 보기) 2021년 2월 19일 오전 5:23:45

Jes, vere kvanto da reelaj nomboj estas kontinuo, sed komputilo povas labori nur kun nombroj, kiujn ni povas prezenti enlimigita memoro de komputilo

sergejm (프로필 보기) 2021년 2월 23일 오전 12:51:46

Pli unu tasko - solvebla sen unu formulo.
Sur surfaco estas tri cirkloj kun malsamaj radiusoj R1 < R2 < R3, ne intersektaj unu kun alia.
Konduku komunajn tangantojn de ĉiu paro de la cirkloj kaj trovu punktojn de intersekto A, B, C. Pruvu ke A, B kaj C kuŝas sur unu linio.
(Eble ne estas tro klare sen bildo)

다시 위로