Kwa maudhui

Enigmo: kalkulu la probablecon

ya Miland, 11 Agosti 2011

Ujumbe: 26

Lugha: Esperanto

Miland (Wasifu wa mtumiaji) 11 Agosti 2011 10:05:58 alasiri

Jen interesa matematika problemo, kiu estis solvenda de abiturientoj por eniri prestiĝan Baratan inĝenieran universitaton (I.I.T.):

La numero 1 havas tri kubajn radikojn, nome 1, w (omega) kaj w^2. [w estas kompleksa numero = 0.5*(-1 + i (3^0.5)), kie i = (-1)^0.5, t.e. imaga kvadrata radiko de -1.]

Ĵetkubo estas ĵetita trifoje, sendepende. Imagu ke la supraj numeroj estas a, b kaj c. Ne necesas ke ili egalu (aŭ ne) unu la alian.

Kalkulu la probablecon, ke
w^a + w^b + w^c = 0.

Verda stelo por la unua ĝusta solvo!

geo63 (Wasifu wa mtumiaji) 11 Agosti 2011 11:03:39 alasiri

6/27

Sxak (Wasifu wa mtumiaji) 12 Agosti 2011 12:02:31 asubuhi

Sed mi kalkulis nur 1/36

Sxak (Wasifu wa mtumiaji) 12 Agosti 2011 1:31:46 asubuhi

Ŝak:Sed mi kalkulis nur 1/36
Pardonon. Mi miskomprenis la enigmon. Mi rekalkulu ankoraŭfoje.

Sxak (Wasifu wa mtumiaji) 12 Agosti 2011 1:34:27 asubuhi

Ŝak:
Ŝak:Sed mi kalkulis nur 1/36
Pardonon. Mi miskomprenis la enigmon. Mi rekalkulu ankoraŭfoje.
2/9

geo63 (Wasifu wa mtumiaji) 12 Agosti 2011 7:13:39 asubuhi

Ŝak:
Ŝak:
Ŝak:Sed mi kalkulis nur 1/36
Pardonon. Mi miskomprenis la enigmon. Mi rekalkulu ankoraŭfoje.
2/9
w^1 = -1/2 + i*sqrt(3)/2
w^2 = -1/2 - i*sqrt(3)/2
w^3 = 1
w^4 = -1/2 + i*sqrt(3)/2
w^5 = -1/2 - i*sqrt(3)/2
w^6 = 1

Se w^a + w^b + w^c = 0, tiam a,b,c devas esti:

1 2 3
1 2 6
4 5 3
4 5 6
1 5 3
1 5 6
2 4 3
2 4 6

Ĉiuj aliaj ne sumiĝas al nulo. Ĉia kombinacio de a, b kaj c povas esti kombinigita je 6:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

Do ni havas 8 x 6 = 48 eventoj, en kiuj la esprimaĵo nuliĝas. Ĉiuj eventoj estas:
6 x 6 x 6 = 216

Do la probableco = 48 / 216 = 6 / 27 = 2 / 9

Sxak (Wasifu wa mtumiaji) 12 Agosti 2011 7:21:41 asubuhi

jes kaj 6/27=2/9
kaj eblas pli facile tion kalkuli: Rinmarku, ke por ke tiu sumo estu 0, la sola varianto por la aro {w^a,w^b,w^c} estas la aro de ĉiuj 3 kubaj radikoj el -1. Do por tio taŭgas ajna unua valoro de la kubo, 2/3 el la eblaj duaj valoroj kaj 1/3 de la triaj. Do la rspondo estas 2/9

Miland (Wasifu wa mtumiaji) 12 Agosti 2011 7:45:17 asubuhi

geo63:.. la probableco = 48 / 216 = 6 / 27
Gratulon! Vi pravas, kaj gajnas la verdan stelon:



La solvo de Ŝak, tamen, estas tre konciza, kaj pro la inĝenieco de lia solvo, li gajnas bluan stelon:

geo63 (Wasifu wa mtumiaji) 12 Agosti 2011 8:14:32 asubuhi

Ŝak:jes kaj 6/27=2/9
kaj eblas pli facile tion kalkuli...
Pardonu al mi, sed mi kalkulis tion ĉi dumnokte post kelkaj glasoj da vino (blanka kaj dolĉa - edzino kun infanoj estas ĉe la bopatrino rido.gif), do la solvo eble ne estas efektiva. sal.gif

Solulo (Wasifu wa mtumiaji) 12 Agosti 2011 7:24:16 alasiri

Mi malŝatis matematikon kvankam mi ĉiam respektis matematikistojn.

Mu volus prezenti al vi unu matematikan problemon. Vi verŝajne konas ĝin, sed lasu min fari tion pro lingva ekzerco.

Tri amikoj decidis iri al restoracio por trinki unu botelon de vino. Ĉiu el ili havis po 10 dolarojn. La kelnero alportis la botelon kies prezo estis 25 dolaroj. Restis 5 dolaroj do ili donis al kelnero 2 dolarojn kiel trinkmono, kaj al ĉiu el ili po 1 dolaro. (25 + 2 + 1 +1 +1).
Ili eliris el la restoracio kaj ĉiu el ili pensas "Mi havis 10 dolarojn, nur mi havas 1, do mi elspezis 9. Ni ĉiuj elspezis 27 (3x9=27). La kelnero ricevis 2, do...27 + 2 faras 29... KIE ESTAS 1 dolaro???

Kurudi juu