Aportes: 11
Idioma: Esperanto
Miland (Mostrar perfil) 23 de mayo de 2008 18:22:05
En ĉi tiu problemo, la ora ĉeno ja estas fermita maŝo! Ĝi havas 79 ĉenerojn, aranĝita kiel fermita maŝo, do kunporteblas ĉirkau la kolo. Junulino deziras uzi ĝin por pagi por 79 noktojn en hotelo, kaj pagi ciutage po unu ĉenero.
Ĉi-okaze, kiom da tranĉoj, minimume, necesas?
Verda stelo por la unua klarigita solvo!
Filu (Mostrar perfil) 23 de mayo de 2008 19:03:42
Tranĉinte unu, la sesan poste, la dek-unuan post la dua tranĉo kaj la dudek-unuan post la tria tranĉo, oni havas kvar ĉenerojn kaj kvar ĉenetojn kiuj enhavas respektive:
Ĉeneroj: 1-1-1-1 (kompreneble);
Ĉenetoj: 5-10-20-40.
Tio ebligas ĉiun nombron ekde unu ĝis sepdek naŭ.
1-4: 1-4 ĉeneroj
5-9: 5 + (0-4 ĉeneroj)
10-14: 10 + (0-4 ĉeneroj)
15-19: 10 + 5 + (0-4 ĉeneroj)
20-24: 20 + (0-4 ĉeneroj)
25-29: 20 + 5 + (0-4 ĉeneroj)
30-34: 20 + 10 + (0-4 ĉeneroj)
35-39: 20 + 10 + 5 + (0-4 ĉeneroj)
40-44: 40 + (0-4 ĉeneroj)
45-49: 40 + 5 + (0-4 ĉeneroj)
50-54: 40 + 10 + (0-4 ĉeneroj)
55-59: 40 + 10 + 5 + (0-4 ĉeneroj)
60-64: 40 + 20 + (0-4 ĉeneroj)
65-69: 40 + 20 + 5 + (0-4 ĉeneroj)
70-74: 40 + 20 + 10 + (0-4 ĉeneroj)
75-79: 40 + 20 + 10 + 5 + (0-4 ĉeneroj)
Filu (Mostrar perfil) 24 de mayo de 2008 14:58:23
Miland (Mostrar perfil) 24 de mayo de 2008 17:23:37
Filu:Neniu tranĉo estas nepre bezonata...Lerta ideo! Sed la minimuma numero ne estas nulo. Tia solvo postulas ke la hotelmajstro povu adekvate ŝanĝi la valoron de la ĉenon por ke la junulino tiam povu pagi ĉiutage.
Tamen, ŝajnas al mi ke, ĉi tiukaze, ne gravas ĉu la ĉeno estas fermita maŝo aŭ ne!
Filu (Mostrar perfil) 24 de mayo de 2008 17:49:15
Per unu tranĉado oni ruze tranĉas kvar ĉenerojn, poziciinte ilin unu apud la alia laŭ rekta linio kiu ebligus samtempe ĉiuj kvar tranĉi. Denove, oni tranĉu unu kaj la postaj sesa, dek-sepa kaj tridek-oka, por finfinfe obteni 1-1-1-1-5-10-20-40 (vidu ĉi-supre por pli da detaloj...)
Miland (Mostrar perfil) 24 de mayo de 2008 18:38:46
Filu:Jen alia malbona kaj malhonesta respondo:Bona ideo, se vi povas trompi la juveliston kiu devas tranĉi la oron. Tamen ...
bonan ŝancon al vi trovi la ĝustan solvon!
Filu (Mostrar perfil) 24 de mayo de 2008 19:01:08
Miland (Mostrar perfil) 24 de mayo de 2008 19:49:43
Filu:Ĉar la hotelmajstro ne deziras konservi ĉenetojn por pluraj tagoj ...Nu, bonaj hotelmajstroj nepre devus povi ŝanĝi kiom ajn da mono kaj ankaŭ iun ajn valuto de riĉaj landoj, kaj ankaŭ akceptos visa-kartojn, sed eble ne zimbabvajn dolarojn, ne havante spacon por stori ilin..
Frankp (Mostrar perfil) 26 de mayo de 2008 08:37:50
Unua tago ŝi devas tranĉi 1 foje.
2. Tago ŝi tranĉas kaj ŝanĝas 2 ĉenero kontraŭ 1 ĉenero. Ŝi nun havas 1+1
Hotelmastro havas 2
3. Tago ŝi ne tranĉas. Ŝi havas 1+1 ĉenero kaj pagas kun 1.
Hotelmastro havas nun 2+1 kaj ĉi havas 1
4. Tago ŝi ne tranĉas kaj pagas kun 1
Hotelmastro havas nun 1+2+1
5. Tago ŝi tranĉas kaj ŝanĝas
Hotelmastro havas 5 ŝi havas 1+2+1
fine partoj estas +1+2+1+5+1+11+1+23+1+33
Fine
Miland (Mostrar perfil) 26 de mayo de 2008 15:48:55
Frankp:kvin....FineBedaŭrinde, ne. Provu denove!