Poruke: 26
Jezik: Esperanto
Miland (Prikaz profila) 12. kolovoza 2011. 21:08:12
Solulo:.. 27 + 2 ..Jen la eraro. La $2 estas parto de la $27, ne aldonaj. Pro tio, la kelnero prenas $2, kaj $25 pagiĝas al la restoracio.
Solulo (Prikaz profila) 12. kolovoza 2011. 21:47:30
Miland:Kiam mi havas sendormajn noktojn mi ofte pensas pri tio. Tio kio mi scias estas ke mi elspezis 9$. Ni kune 27$. La kelnero ricevis 2$ . Mi senĉese pensas pri la 1$.Solulo:.. 27 + 2 ..Jen la eraro. La $2 estas parto de la $27, ne aldonaj. Pro tio, la kelnero prenas $2, kaj $25 pagiĝas al la restoracio.
Tio estas bona rimedo por ĉiuj kiuj suferas je sendormeco. Do, tri amikoj iris al la restoracio. Ĉiu el ili havis...........
...ronkado, ronkado, ronkado.....
Miland (Prikaz profila) 13. kolovoza 2011. 11:48:13
Ĵetkubo estas ĵetita kvarfoje, sendepende. Imagu ke la supraj numeroj estas a, b, c kaj d. Kalkulu la probablecon, ke
w^a + w^b + w^c + w^d = 1.
Feliĉan dormon!
Lom (Prikaz profila) 13. kolovoza 2011. 13:48:43
Aŭ nombru la ĵetkubojn.
Sxak (Prikaz profila) 13. kolovoza 2011. 14:05:51
Miland:Nu, se vi bezonas logikan dormigilon, jen alia problemo por vi pripensi:Se mi ne eraras, la kvanto de vojoj de 0 al 1 estas 10
Ĵetkubo estas ĵetita kvarfoje, sendepende. Imagu ke la supraj numeroj estas a, b, c kaj d. Kalkulu la probablecon, ke
w^a + w^b + w^c + w^d = 1.
Feliĉan dormon!
do la respondo estas 10/81
Se dmi povis erari pri la kbvanto de vojoj.
Miland (Prikaz profila) 13. kolovoza 2011. 14:13:24
Ŝak:Se mi ne eraras, la kvanto de vojoj de 0 al 1 estas 10Bedaŭrinde, tio ne estas mia solvo.
do la respondo estas 10/81
Se dmi povis erari pri la kbvanto de vojoj.
Strange, ke la numeratoro de via frakcio havas 5 kiel faktoron!
Sxak (Prikaz profila) 13. kolovoza 2011. 23:52:47
Miland (Prikaz profila) 14. kolovoza 2011. 12:38:27
★
Jen alia solvo, eble iom pli simila al via metodo por la unua problemo: estas 6 manieroj elekti 2 el la 4 numeroj, kiu devas esti '1' (t.e. 3 aŭ 6), kaj la aliaj estu 'W' kaj 'W2' po unu, en iu ajn ordo. La probableco elekti du '1' estas 1/9, dum tio de unu 'W' kaj unu 'W2' estas 2/9 (ĉar iu ajn povas esti la unua). La tuta probableco do estas 6 * 1/9 * 2/9 = 4/27.
Miland (Prikaz profila) 15. kolovoza 2011. 08:22:23
Lom:Faru ĝin rekte por "n" ĵetkuboj ĵetitaj...Jen generaligita versio de la problemo, en du partoj.
(a) Ĵetkubo estas ĵtita sesfoje. La supra numeroj estas A1, A2,..., A6. Se w estas kompleksa kuba radiko de 1, kalkulu la probablecon de w^A1 + w^A2 + ... + w^A6 = 0.
(b) Ĵetkubo estas ĵtita (3*k)-foje. La supra numeroj estas A1, A2,..., Am, kie m = 3k. Se w estas kompleksa kuba radiko de 1, kalkulu la probablecon de w^A1 + w^A2 + ... + w^Am = 0.
Sxak (Prikaz profila) 15. kolovoza 2011. 13:43:56
Miland:Tio aspektas por mi iom stranga, sed mi ne vidas aliajn valorojn por w^Ai, ol 3 unuojn, 3 w-ojn kaj 3 w^2-ojn, do la respondo estas
(b) Ĵetkubo estas ĵtita (3*k)-foje. La supra numeroj estas A1, A2,..., Am, kie m = 3k. Se w estas kompleksa kuba radiko de 1, kalkulu la probablecon de w^A1 + w^A2 + ... + w^Am = 0.
(3k)!/((k!)^3*3^(3k))
Ĉu estas vere, ke ĉiu ebla nombro por sum(w^Ai) povas esti ricevata nur solamaniere?
Kiam mi vidis tiun enigmon la unuan fojon, mi estis certa, ke ne, sed nun...