前往目錄

Enigmo: kalkulu la probablecon

貼文者: Miland, 2011年8月11日

訊息: 26

語言: Esperanto

Miland (顯示個人資料) 2011年8月12日下午9:08:12

Solulo:.. 27 + 2 ..
Jen la eraro. La $2 estas parto de la $27, ne aldonaj. Pro tio, la kelnero prenas $2, kaj $25 pagiĝas al la restoracio.

Solulo (顯示個人資料) 2011年8月12日下午9:47:30

Miland:
Solulo:.. 27 + 2 ..
Jen la eraro. La $2 estas parto de la $27, ne aldonaj. Pro tio, la kelnero prenas $2, kaj $25 pagiĝas al la restoracio.
rideto.gif Kiam mi havas sendormajn noktojn mi ofte pensas pri tio. Tio kio mi scias estas ke mi elspezis 9$. Ni kune 27$. La kelnero ricevis 2$ . Mi senĉese pensas pri la 1$.

Tio estas bona rimedo por ĉiuj kiuj suferas je sendormeco. Do, tri amikoj iris al la restoracio. Ĉiu el ili havis...........
...ronkado, ronkado, ronkado..... rideto.gif

Miland (顯示個人資料) 2011年8月13日上午11:48:13

Nu, se vi bezonas logikan dormigilon, jen alia problemo por vi pripensi:

Ĵetkubo estas ĵetita kvarfoje, sendepende. Imagu ke la supraj numeroj estas a, b, c kaj d. Kalkulu la probablecon, ke
w^a + w^b + w^c + w^d = 1.

Feliĉan dormon!

Lom (顯示個人資料) 2011年8月13日下午1:48:43

Faru ĝin rekte por "n" ĵetkuboj ĵetitaj.
Aŭ nombru la ĵetkubojn. ridulo.gif

Sxak (顯示個人資料) 2011年8月13日下午2:05:51

Miland:Nu, se vi bezonas logikan dormigilon, jen alia problemo por vi pripensi:

Ĵetkubo estas ĵetita kvarfoje, sendepende. Imagu ke la supraj numeroj estas a, b, c kaj d. Kalkulu la probablecon, ke
w^a + w^b + w^c + w^d = 1.

Feliĉan dormon!
Se mi ne eraras, la kvanto de vojoj de 0 al 1 estas 10
do la respondo estas 10/81
Se dmi povis erari pri la kbvanto de vojoj.

Miland (顯示個人資料) 2011年8月13日下午2:13:24

Ŝak:Se mi ne eraras, la kvanto de vojoj de 0 al 1 estas 10
do la respondo estas 10/81
Se dmi povis erari pri la kbvanto de vojoj.
Bedaŭrinde, tio ne estas mia solvo.
Strange, ke la numeratoro de via frakcio havas 5 kiel faktoron!

Sxak (顯示個人資料) 2011年8月13日下午11:52:47

ĝuste nokte mi rekalkulis alimaniere kaj komprenis, ke la solaj eblaj valoroj estas 1,1,w,w^2, kiuj povas esti transponitaj 4*3=12 fojojn, do la respondo deas esti 12/81=4/27

Miland (顯示個人資料) 2011年8月14日下午12:38:27

Gratulon! Mi devas konfesi, ke mi mem ne estis tute certa pri la solvo unue (krom tio, ke la faktoroj en la numeratoro ne enhavas 5), sed vi konvinkis min. Vi meritas do verdan stelon:



Jen alia solvo, eble iom pli simila al via metodo por la unua problemo: estas 6 manieroj elekti 2 el la 4 numeroj, kiu devas esti '1' (t.e. 3 aŭ 6), kaj la aliaj estu 'W' kaj 'W2' po unu, en iu ajn ordo. La probableco elekti du '1' estas 1/9, dum tio de unu 'W' kaj unu 'W2' estas 2/9 (ĉar iu ajn povas esti la unua). La tuta probableco do estas 6 * 1/9 * 2/9 = 4/27.

Miland (顯示個人資料) 2011年8月15日上午8:22:23

Lom:Faru ĝin rekte por "n" ĵetkuboj ĵetitaj... ridulo.gif
Jen generaligita versio de la problemo, en du partoj.

(a) Ĵetkubo estas ĵtita sesfoje. La supra numeroj estas A1, A2,..., A6. Se w estas kompleksa kuba radiko de 1, kalkulu la probablecon de w^A1 + w^A2 + ... + w^A6 = 0.

(b) Ĵetkubo estas ĵtita (3*k)-foje. La supra numeroj estas A1, A2,..., Am, kie m = 3k. Se w estas kompleksa kuba radiko de 1, kalkulu la probablecon de w^A1 + w^A2 + ... + w^Am = 0.

Sxak (顯示個人資料) 2011年8月15日下午1:43:56

Miland:
(b) Ĵetkubo estas ĵtita (3*k)-foje. La supra numeroj estas A1, A2,..., Am, kie m = 3k. Se w estas kompleksa kuba radiko de 1, kalkulu la probablecon de w^A1 + w^A2 + ... + w^Am = 0.
Tio aspektas por mi iom stranga, sed mi ne vidas aliajn valorojn por w^Ai, ol 3 unuojn, 3 w-ojn kaj 3 w^2-ojn, do la respondo estas

(3k)!/((k!)^3*3^(3k))

Ĉu estas vere, ke ĉiu ebla nombro por sum(w^Ai) povas esti ricevata nur solamaniere?
Kiam mi vidis tiun enigmon la unuan fojon, mi estis certa, ke ne, sed nun...

回到上端