去目錄頁

Matematika tasko

sergejm, 2021年2月10日

讯息: 125

语言: Esperanto

sergejm (显示个人资料) 2021年2月10日下午6:05:50

En Google mi vidis taskon, kiu onidire estis en Usona ekzameno, sed oni forigis ĝin, ĉar aperis rusaj studentoj, kiuj ne povis ĝin solvi.
En ortangula triangulo ABC kun orta angulo C hipotenuzo AB estas 10, alteco CD de C al la hipotenuzo estas 6. Kia estas areo de la triangulo?
Mi mem malĝuste solvis la taskon.

nornen (显示个人资料) 2021年2月11日上午12:45:23

Mi amas matematikaĵojn, tial Dankon!

En kia geometrio ni troviĝas? Certe ne en la Eŭklida Ebeno, ĉar laŭ la teoremo de Taleso en rektangula triangulo la maximuma alteco sur la hipotenuzo estas la duono de la hipotenuzo. Tial la triangulo priskribita de vi ekzistas nur en kurba spaco. Tamen oni devas scii, kiel kurba estas tiu spaco. Ĉu mi miskomprenis ion?

Ĉu temas pri triangulo sur la surfaco de io regula? De sfero? De hiperbola spaco?

sergejm (显示个人资料) 2021年2月11日上午5:10:54

Ordinara Eŭklida ebeno.
Simpla solvo estas multipliki hipotenuzon je alteco kaj dividi je 2 kun respondo 10*6/2=30, ja areo ne dependas ĉu la trianglo estas ortangula aŭ ne.
Sed necesas kontroli, ĉu tia triangulo ekzistas, kaj la ĝusta respondo estas: Tia triangulo ne ekzistas.
Mi ne komprenis, ĉu Usonaj studentoj rimarkis tion aŭ tion rimarkis nur la rusaj.
Jen estas ligo al la video (ruslingva):
https://youtu.be/xsYDTPzOCrk

StefKo (显示个人资料) 2021年2月11日下午3:51:33

Bone elpensita!

sergejm (显示个人资料) 2021年2月11日下午7:35:14

Sur sfero tia triangulo ekzistas: supozu ke radiuso de la sfero r estas tia ke hipotenuzo c estas distanco de poluso ĝis ekvatoro: pi/2 * r = c = 10; r = 2*c/pi = 20/pi
Tiam la triangulo havos du rektajn angulojn, C kaj ekzemple B. Tiam kateto a = h = 6. Angulo A = a/r = 6*pi/20 = 3*pi/10.
La areo de la triangulo S = r^2 * (A + B + C - pi) = A * r^2 = 120/pi.
Sed ni povas elekti alian radiuson de la sfero.
Helpilo se vi volas kalkuli: Teoremo analoga al teoremo de Pitagoro por sfera triangulo:
cos(c/r) = cos(a/r)*cos(b/r)

Sur ebeno de Lobaĉevskij tia triangulo ankaŭ ne ekzistas.

nornen (显示个人资料) 2021年2月11日下午10:01:58

Interesa afero.

Ŝajnas, ke ni trovas tian triangulon sur sfero kun radio r, ni ankaŭ trovos tian triangulon sur ĉiu sfero kun radio 0 < ρ < r. Tiu triangulo povas esti "stranga", enhavante parton de si mem, sed: kial ne?

Mi konjektas tion:
Ekzistas radio R, tia ke:
Sur sfero kun radio R (0 < R) ekzistas nur unu tia triangulo (senrigarde de movado, rotacio, spegulado) [1].
Sur sferoj kun radio ρ tia, ke 0 < ρ < R, ekzistas nefiniaj tiaj trianguloj kun malsamaj anguloj inter la hipotenuso kaj la katedoj.
Sur sferoj kun radio ρ tia, ke R < ρ, ne ekzistas tia triangulo.

(La argumento estas facila, sed eble malvera: Se R alproksimiĝasas +∞ ni troviĝas denove sur la ebeno, kie tia triangulo ne ekzistas.)

Ĉu vere? Se vere, kia estas R?

- - - -
[1] Alivorte kaj eble pli precize: Ĉiuj trianguloj sur tia sfero havas la samajn angulojn.

sergejm (显示个人资料) 2021年2月12日上午5:40:17

Se ni ne volas, ke la triangulo estu 'stranga', estas minimuma r kaj maksimuma R de sfero sur kiu ĝi eksistas.
Almenaŭ hipotenuzo ne estu pli longa ol ekvatoro de la sfero: c ≤ 2*pi*r
Maksimuma R povas esti kalkulata, uzante menciita de mi teoremo de Pitagoro por sfera triangulo.
Estu x kaj y partoj de hipotenuzo, je kiuj ĝin dividas alteco.
Tiam
cos(c/R) = cos(a/R) * cos(b/R)
cos(a/R) = cos(h/R) * cos(x/R)
cos(b/R) = cos(h/R) * cos(y/R)
cos(c/R) = cos(h/R)^2 * cos(x/R) * cos(y/R)
cos(c/R) = cos((x+y)/R) = cos(x/R) * cos(y/R) - sin(x/R) * sin(y/R)
sin(h/R)^2 * cos(x/R) * cos(y/R) = sin(x/R) * sin(y/R)
sin(h/R)^2 = tg(x/R) * tg(y/R) (se la anguloj estas malpli ol 90°)
tg(c/R) = tg((x+y)/R) = (tg(x/R) + tg(y/R))/(1 - tg(x/R) * tg(y/R)) = (tg(x/R) + tg(y/R))/cos(h/R)^2

Nun faru kvadratan ekvacion, kies radikoj estas tg(x/R) kaj tg(y/R) kaj kalkulu diskriminanton.

nornen (显示个人资料) 2021年2月12日下午4:45:42

Forigita pro enhavi nur stultaĵojn. Hehehe

sergejm (显示个人资料) 2021年2月12日下午8:20:15

Mi ricevis iom alian (eble iu el ni eraras):
X² - (tg(10/R) cos²(6/R)) X + (sin²(6/R)) = 0 (laŭ teoremo de Viète)
Δ = tg²(10/R) cos⁴(6/R) − 4 sin²(6/R) >= 0
Se la anguloj estas malpli ol 90°, ni povas simpligi:
tg(10/R) ≥ 2 sin(6/R)/cos²(6/R)
tg(10/R) ≥ 2 sin(6/R)/(1 - sin²(6/R))
tg(10/R) = 2 tg(5/R)/(1 - tg²(5/R))
tg(5/R) ≥ sin(6/R)

PS: en miaj antaŭaj mesaĝoj necesas anstataŭi 'rektangula' al 'ortangula'

nornen (显示个人资料) 2021年2月12日下午9:47:45

Jes, kiam mi solvas rekte por tg(y/R) mi ricevas la saman determinanton:

tg(c/R) cos²(h/R) = tg(x/R) + tg(y/R)
tg(x/R) = tg(c/R) cos²(h/R) − tg(y/R)

sin²(h/R) = tg(x/R) tg(y/R)
sin²(h/R) = (tg(c/R) cos²(h/R) − tg(y/R)) tg(y/R)
sin²(h/R) = tg(c/R) cos²(h/R) tg(y/R) − tg²(y/R)

tg²(y/R) − tg(c/R) cos²(h/R) tg(y/R) + sin²(h/R) = 0

Δ = tg²(c/R) cos⁴(h/R) − 4 sin²(h/R) = tg²(10/R) cos⁴(6/R) − 4 sin²(6/R)

Tamen restas la problemo pri nefinia multo da nedifiniejoj kaj la nefinia multo da radikoj sur ĉiu intervalo enhavanta 0.

Mi estas stulta. Problemo solvita. Ĉar la anguloj devas estis malpli ol π/2, R devas esti pli ol 20/π. Sur la malfermita intervalo ]20/π; +∞[ ekzistas nur unu radiko ĉirkaŭ ρ ≈ 9,1. Sur ]20/π; +∞[ la funkcio Δ(R) estas monotone falanta, kun positivaj valoroj sur ]20/π; ρ[ kaj negativaj valoroj sur ]ρ; +∞[. Tial la krita radiuso estas ρ ≈ 9,1.

- - - -

Mi ne scias kiel mi eraris en mia lasta afiŝo.
Redaktaĵoj: Eraro mia trovita: Per ia cerbofarto, mi komencis ĉion per (1 −tg(x/R)) (1 − tg(y/R)) kaj ne ĝuste per (x −tg(x/R)) (x − tg(y/R)).

- - - -

Estis granda plezuro por mi ĉi tiu konversacio kun vi. Mi levas mian ĉapelon antaŭ viaj matematikaj scioj kaj spertoj.

回到上端